Circular DNAs Participate in Tumorigenesis and Its Mechanisms
Abstract
Chromosome-derived circular DNAs have different characters from linear DNAs and RNAs, which exert distinctive functions, and participate in a widespread range of physiological and pathological processes. Although, the composition, structure and genome-wide frequency of circular DNAs have not yet been illuminated systemically, circular DNAs are identified to act as unanticipated major sources of somatic rearrangements, which is an important genomic feature in tumorigenesis and represents a multihit and ongoing mutagenic process. And, this process remarkably contributes to oncogenic remodeling and oncogenes amplification through chimeric circularization and reintegration of circular DNAs into the linear genome, which is closely associated with high cancer mortality and morbidity. It has been found that circular DNAs-stimulated oncogenes amplification and overexpression implicate in diverse cytopathological processes during cancer progression, including cell proliferation, apoptosis, autophagy, epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) stiffness and angiogenesis. Herein, we comprehensively introduced circular DNAs’ formation and characteristics, and emphatically elaborated circular DNAs-induced oncogenes amplification and overexpression and their functional mechanisms regulating cancer behaviors. Lastly, some mysteries in oncogenic circular DNAs’ study were introduced, and the perspectives were also discussed in cancer diagnosis and treatment.
Keywords
Circular DNAs, oncogene, molecular mechanism, cancer progression
References
- Menghi, F., F.P. Barthel, V. Yadav et al (2018) The Tandem Duplicator Phenotype Is a Prevalent Genome-Wide Cancer Configuration Driven by Distinct Gene Mutations. Cancer Cell 34: 197-210 e5
- Gisselsson, D., Y. Jin, D. Lindgren et al (2010) Generation of trisomies in cancer cells by multipolar mitosis and incomplete cytokinesis. Proc Natl Acad Sci U S A 107: 20489-93
- Korbel, J.O. and P.J. Campbell (2013) Criteria for inference of chromothripsis in cancer genomes. Cell 152: 1226-36
- Shoura, M.J., I. Gabdank, L. Hansen et al (2017) Intricate and Cell Type-Specific Populations of Endogenous Circular DNA (eccDNA) in Caenorhabditis elegans and Homo sapiens. G3 (Bethesda) 7: 3295-3303
- Sproul, J.S., D.E. Khost, D.G. Eickbush et al (2020) Dynamic evolution of euchromatic satellites on the X chromosome in Drosophila melanogaster and the simulans clade. Mol Biol Evol
- Moller, H.D., L. Parsons, T.S. Jorgensen et al (2015) Extrachromosomal circular DNA is common in yeast. Proc Natl Acad Sci U S A 112: E3114-22
- Shibata, Y., P. Kumar, R. Layer et al (2012) Extrachromosomal microDNAs and chromosomal microdeletions in normal tissues. Science 336: 82-6
- Hotta, Y. and A. Bassel (1965) Molecular Size and Circularity of DNA in Cells of Mammals and Higher Plants. Proc Natl Acad Sci U S A 53: 356-62
- Turner, K.M., V. Deshpande, D. Beyter et al (2017) Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature 543: 122-125
- Garsed, D.W., A.J. Holloway, and D.M. Thomas (2009) Cancer-associated neochromosomes: a novel mechanism of oncogenesis. Bioessays 31: 1191-200
- Henson, J.D., Y. Cao, L.I. Huschtscha et al (2009) DNA C-circles are specific and quantifiable markers of alternative-lengthening-of-telomeres activity. Nat Biotechnol 27: 1181-5
- Schmidt, H., H. Taubert, H. Lange et al (2009) Small polydispersed circular DNA contains strains of mobile genetic elements and occurs more frequently in permanent cell lines of malignant tumors than in normal lymphocytes. Oncol Rep 22: 393-400
- Koche, R.P., E. Rodriguez-Fos, K. Helmsauer et al (2020) Extrachromosomal circular DNA drives oncogenic genome remodeling in neuroblastoma. Nat Genet 52: 29-34
- Poot, M. (2018) Genes, Proteins, and Biological Pathways Preventing Chromothripsis. Methods Mol Biol 1769: 231-251
- Mehta, D., L. Cornet, M. Hirsch-Hoffmann et al (2020) Full-length sequencing of circular DNA viruses and extrachromosomal circular DNA using CIDER-Seq. Nat Protoc
- Diaz-Lara, A., D.H. Gent, and R.R. Martin (2016) Identification of Extrachromosomal Circular DNA in Hop via Rolling Circle Amplification. Cytogenet Genome Res 148: 237-40
- Deshpande, V., J. Luebeck, N.D. Nguyen et al (2019) Exploring the landscape of focal amplifications in cancer using AmpliconArchitect. Nat Commun 10: 392
- Moller, H.D., R.K. Bojsen, C. Tachibana et al (2016) Genome-wide Purification of Extrachromosomal Circular DNA from Eukaryotic Cells. J Vis Exp: e54239
- Dillon, L.W., P. Kumar, Y. Shibata et al (2015) Production of Extrachromosomal MicroDNAs Is Linked to Mismatch Repair Pathways and Transcriptional Activity. Cell Rep 11: 1749-59
- Pennisi, E. (2017) Circular DNA throws biologists for a loop. Science 356: 996
- deCarvalho, A.C., H. Kim, L.M. Poisson et al (2018) Discordant inheritance of chromosomal and extrachromosomal DNA elements contributes to dynamic disease evolution in glioblastoma. Nat Genet 50: 708-717
- Vogt, N., A. Gibaud, F. Lemoine et al (2014) Amplicon rearrangements during the extrachromosomal and intrachromosomal amplification process in a glioma. Nucleic Acids Res 42: 13194-205
- Crossley, M.P., M. Bocek, and K.A. Cimprich (2019) R-Loops as Cellular Regulators and Genomic Threats. Mol Cell 73: 398-411
- Pavri, R. (2017) R Loops in the Regulation of Antibody Gene Diversification. Genes (Basel) 8
- Wiedemann, E.M., M. Peycheva, and R. Pavri (2016) DNA Replication Origins in Immunoglobulin Switch Regions Regulate Class Switch Recombination in an R-Loop-Dependent Manner. Cell Rep 17: 2927-2942
- Genois, M.M., M. Plourde, C. Ethier et al (2015) Roles of Rad51 paralogs for promoting homologous recombination in Leishmania infantum. Nucleic Acids Res 43: 2701-15
- Cai, M., H. Zhang, L. Hou et al (2019) Inhibiting homologous recombination decreases extrachromosomal amplification but has no effect on intrachromosomal amplification in methotrexate-resistant colon cancer cells. Int J Cancer 144: 1037-1048
- Meng, X., X. Qi, H. Guo et al (2015) Novel role for non-homologous end joining in the formation of double minutes in methotrexate-resistant colon cancer cells. J Med Genet 52: 135-44
- Peng, Z., W. Zhou, W. Fu et al (2015) Correlation between frequency of non-allelic homologous recombination and homology properties: evidence from homology-mediated CNV mutations in the human genome. Hum Mol Genet 24: 1225-33
- van Loon, N., D. Miller, and J.P. Murnane (1994) Formation of extrachromosomal circular DNA in HeLa cells by nonhomologous recombination. Nucleic Acids Res 22: 2447-52
- Ott, C.J. (2020) Circles with a Point: New Insights into Oncogenic Extrachromosomal DNA. Cancer Cell 37: 145-146
- Ain, Q., C. Schmeer, D. Wengerodt et al (2020) Extrachromosomal Circular DNA: Current Knowledge and Implications for CNS Aging and Neurodegeneration. Int J Mol Sci 21
- Nikolaev, S., F. Santoni, M. Garieri et al (2014) Extrachromosomal driver mutations in glioblastoma and low-grade glioma. Nat Commun 5: 5690
- Zou, H., R. Feng, Y. Huang et al (2015) Double minute amplification of mutant PDGF receptor alpha in a mouse glioma model. Sci Rep 5: 8468
- Verhaak, R.G.W., V. Bafna, and P.S. Mischel (2019) Extrachromosomal oncogene amplification in tumour pathogenesis and evolution. Nat Rev Cancer 19: 283-288
- L'Abbate, A., G. Macchia, P. D'Addabbo et al (2014) Genomic organization and evolution of double minutes/homogeneously staining regions with MYC amplification in human cancer. Nucleic Acids Res 42: 9131-45
- Xu, K., L. Ding, T.C. Chang et al (2019) Structure and evolution of double minutes in diagnosis and relapse brain tumors. Acta Neuropathol 137: 123-137
- Hnisz, D., A.S. Weintraub, D.S. Day et al (2016) Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 351: 1454-1458
- Wong, J., S.Y.C. Choi, R. Liu et al (2019) Potential Therapies for Infectious Diseases Based on Targeting Immune Evasion Mechanisms That Pathogens Have in Common With Cancer Cells. Front Cell Infect Microbiol 9: 25
- Bruckert, P., R. Kappler, H. Scherthan et al (2000) Double minutes and c-MYC amplification in acute myelogenous leukemia: Are they prognostic factors? Cancer Genet Cytogenet 120: 73-9
- Wang, T., B. Cai, M. Ding et al (2019) c-Myc Overexpression Promotes Oral Cancer Cell Proliferation and Migration by Enhancing Glutaminase and Glutamine Synthetase Activity. Am J Med Sci 358: 235-242
- Amatangelo, M.D., S. Goodyear, D. Varma et al (2012) c-Myc expression and MEK1-induced Erk2 nuclear localization are required for TGF-beta induced epithelial-mesenchymal transition and invasion in prostate cancer. Carcinogenesis 33: 1965-75
- Cho, K.B., M.K. Cho, W.Y. Lee et al (2010) Overexpression of c-myc induces epithelial mesenchymal transition in mammary epithelial cells. Cancer Lett 293: 230-9
- VanDevanter, D.R., V.D. Piaskowski, J.T. Casper et al (1990) Ability of circular extrachromosomal DNA molecules to carry amplified MYCN proto-oncogenes in human neuroblastomas in vivo. J Natl Cancer Inst 82: 1815-21
- Ambrosio, S., S. Amente, C.D. Sacca et al (2017) LSD1 mediates MYCN control of epithelial-mesenchymal transition through silencing of metastatic suppressor NDRG1 gene. Oncotarget 8: 3854-3869
- Zhu, X., Y. Li, S. Zhao et al (2018) LSINCT5 activates Wnt/beta-catenin signaling by interacting with NCYM to promote bladder cancer progression. Biochem Biophys Res Commun 502: 299-306
- Morton, A.R., N. Dogan-Artun, Z.J. Faber et al (2019) Functional Enhancers Shape Extrachromosomal Oncogene Amplifications. Cell 179: 1330-1341 e13
- Chen, Y., X. Chen, X. Ding et al (2019) Afatinib, an EGFR inhibitor, decreases EMT and tumorigenesis of Huh7 cells by regulating the ERKVEGF/MMP9 signaling pathway. Mol Med Rep 20: 3317-3325
- Wang, J., Z. Zhang, R. Li et al (2018) ADAM12 induces EMT and promotes cell migration, invasion and proliferation in pituitary adenomas via EGFR/ERK signaling pathway. Biomed Pharmacother 97: 1066-1077
- Huang, F., Q. Shi, Y. Li et al (2018) HER2/EGFR-AKT Signaling Switches TGFbeta from Inhibiting Cell Proliferation to Promoting Cell Migration in Breast Cancer. Cancer Res 78: 6073-6085
- Yochum, Z.A., J. Cades, H. Wang et al (2019) Targeting the EMT transcription factor TWIST1 overcomes resistance to EGFR inhibitors in EGFR-mutant non-small-cell lung cancer. Oncogene 38: 656-670
- Gao, W. and J. Han (2018) Overexpression of ING5 inhibits HGF-induced proliferation, invasion and EMT in thyroid cancer cells via regulation of the c-Met/PI3K/Akt signaling pathway. Biomed Pharmacother 98: 265-270
- Li, J., X. Xu, S. Meng et al (2017) MET/SMAD3/SNAIL circuit mediated by miR-323a-3p is involved in regulating epithelial-mesenchymal transition progression in bladder cancer. Cell Death Dis 8: e3010
- Chang, K.K., C. Yoon, B.C. Yi et al (2018) Platelet-derived growth factor receptor-alpha and -beta promote cancer stem cell phenotypes in sarcomas. Oncogenesis 7: 47
- Corvi, R., L. Savelyeva, L. Amler et al (1995) Cytogenetic evolution of MYCN and MDM2 amplification in the neuroblastoma LS tumour and its cell line. Eur J Cancer 31A: 520-3
- Lee, J.C., T.P. Lu, C.A. Changou et al (2016) Genomewide copy number analysis of Mullerian adenosarcoma identified chromosomal instability in the aggressive subgroup. Mod Pathol 29: 1070-82
- Sriraman, A., A. Dickmanns, Z. Najafova et al (2018) CDK4 inhibition diminishes p53 activation by MDM2 antagonists. Cell Death Dis 9: 918
- Vilgelm, A.E., N. Saleh, R. Shattuck-Brandt et al (2019) MDM2 antagonists overcome intrinsic resistance to CDK4/6 inhibition by inducing p21. Sci Transl Med 11
- Agarwal, S., G. Milazzo, K. Rajapakshe et al (2018) MYCN acts as a direct co-regulator of p53 in MYCN amplified neuroblastoma. Oncotarget 9: 20323-20338
- Liu, Y., D. Liu, and W. Wan (2019) MYCN-induced E2F5 promotes neuroblastoma cell proliferation through regulating cell cycle progression. Biochem Biophys Res Commun 511: 35-40
- Luo, P., C. Zhang, F. Liao et al (2019) Transcriptional positive cofactor 4 promotes breast cancer proliferation and metastasis through c-Myc mediated Warburg effect. Cell Commun Signal 17: 36
- Zhang, Z., M. Liu, Q. Hu et al (2019) FGFBP1, a downstream target of the FBW7/c-Myc axis, promotes cell proliferation and migration in pancreatic cancer. Am J Cancer Res 9: 2650-2664
- Du, S., H. Wang, J. Cai et al (2020) Apolipoprotein E2 modulates cell cycle function to promote proliferation in pancreatic cancer cells via regulation of the c-Myc-p21(Waf1) signalling pathway. Biochem Cell Biol: 1-12
- Zhang, J., S. Feng, W. Su et al (2017) Overexpression of FAM83H-AS1 indicates poor patient survival and knockdown impairs cell proliferation and invasion via MET/EGFR signaling in lung cancer. Sci Rep 7: 42819
- Zhou, Z., W. Wang, X. Xie et al (2018) Methylation-induced silencing of SPG20 facilitates gastric cancer cell proliferation by activating the EGFR/MAPK pathway. Biochem Biophys Res Commun 500: 411-417
- Fu, H., H. Gao, X. Qi et al (2018) Aldolase A promotes proliferation and G1/S transition via the EGFR/MAPK pathway in non-small cell lung cancer. Cancer Commun (Lond) 38: 18
- Li, B., C.M. Ding, Y.X. Li et al (2018) Over-regulation of microRNA-133b inhibits cell proliferation of cisplatin-induced non-small cell lung cancer cells through PI3K/Akt and JAK2/STAT3 signaling pathway by targeting EGFR. Oncol Rep 39: 1227-1234
- Liu, H., H. Deng, Y. Zhao et al (2018) LncRNA XIST/miR-34a axis modulates the cell proliferation and tumor growth of thyroid cancer through MET-PI3K-AKT signaling. J Exp Clin Cancer Res 37: 279
- Baumgartner, U., F. Berger, A. Hashemi Gheinani et al (2018) miR-19b enhances proliferation and apoptosis resistance via the EGFR signaling pathway by targeting PP2A and BIM in non-small cell lung cancer. Mol Cancer 17: 44
- Liang, Q., R.R. Mohan, L. Chen et al (1998) Signaling by HGF and KGF in corneal epithelial cells: Ras/MAP kinase and Jak-STAT pathways. Invest Ophthalmol Vis Sci 39: 1329-38
- Chanthery, Y.H., W.C. Gustafson, M. Itsara et al (2012) Paracrine signaling through MYCN enhances tumor-vascular interactions in neuroblastoma. Sci Transl Med 4: 115ra3
- Calero, R., E. Morchon, J.I. Johnsen et al (2014) Sunitinib suppress neuroblastoma growth through degradation of MYCN and inhibition of angiogenesis. PLoS One 9: e95628
- Oh, E.T., C.W. Kim, H.G. Kim et al (2017) Brusatol-Mediated Inhibition of c-Myc Increases HIF-1alpha Degradation and Causes Cell Death in Colorectal Cancer under Hypoxia. Theranostics 7: 3415-3431
- Park, J.Y., P.J. Kim, S.J. Shin et al (2020) FGFR1 is associated with c-MYC and proangiogenic molecules in metastatic renal cell carcinoma under anti-angiogenic therapy. Histopathology
- Xu, Z., C. Zhu, C. Chen et al (2018) CCL19 suppresses angiogenesis through promoting miR-206 and inhibiting Met/ERK/Elk-1/HIF-1alpha/VEGF-A pathway in colorectal cancer. Cell Death Dis 9: 974
- Takeuchi, S., W. Wang, Q. Li et al (2012) Dual inhibition of Met kinase and angiogenesis to overcome HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer. Am J Pathol 181: 1034-43
- Yu, X., W. Li, Q. Deng et al (2017) Neoalbaconol inhibits angiogenesis and tumor growth by suppressing EGFR-mediated VEGF production. Mol Carcinog 56: 1414-1426
- Li, L., P. Fan, H. Chou et al (2019) Herbacetin suppressed MMP9 mediated angiogenesis of malignant melanoma through blocking EGFR-ERK/AKT signaling pathway. Biochimie 162: 198-207
- Kang, D.Y., N. Sp, D.H. Kim et al (2018) Salidroside inhibits migration, invasion and angiogenesis of MDAMB 231 TNBC cells by regulating EGFR/Jak2/STAT3 signaling via MMP2. Int J Oncol 53: 877-885
- Gerli, M.F.M., L.A. Moyle, S. Benedetti et al (2019) Combined Notch and PDGF Signaling Enhances Migration and Expression of Stem Cell Markers while Inducing Perivascular Cell Features in Muscle Satellite Cells. Stem Cell Reports 12: 461-473
- Ip, C.K.M., P.K.S. Ng, K.J. Jeong et al (2018) Neomorphic PDGFRA extracellular domain driver mutations are resistant to PDGFRA targeted therapies. Nat Commun 9: 4583
- Brandetti, E., I. Veneziani, O. Melaiu et al (2017) MYCN is an immunosuppressive oncogene dampening the expression of ligands for NK-cell-activating receptors in human high-risk neuroblastoma. Oncoimmunology 6: e1316439
- Stermann, A., N. Huebener, D. Seidel et al (2015) Targeting of MYCN by means of DNA vaccination is effective against neuroblastoma in mice. Cancer Immunol Immunother 64: 1215-27
- Wang, J., Y. Jia, S. Zhao et al (2017) BIN1 reverses PD-L1-mediated immune escape by inactivating the c-MYC and EGFR/MAPK signaling pathways in non-small cell lung cancer. Oncogene 36: 6235-6243
- Lin, L.L., C.C. Huang, C.L. Wu et al (2016) Downregulation of c-Myc is involved in TLR3-mediated tumor death of neuroblastoma xenografts. Lab Invest 96: 719-30
- Chen, N., W. Fang, J. Zhan et al (2015) Upregulation of PD-L1 by EGFR Activation Mediates the Immune Escape in EGFR-Driven NSCLC: Implication for Optional Immune Targeted Therapy for NSCLC Patients with EGFR Mutation. J Thorac Oncol 10: 910-23
- Ahn, H.K., S. Kim, D. Kwon et al (2019) MET Receptor Tyrosine Kinase Regulates the Expression of Co-Stimulatory and Co-Inhibitory Molecules in Tumor Cells and Contributes to PD-L1-Mediated Suppression of Immune Cell Function. Int J Mol Sci 20
- Glodde, N., T. Bald, D. van den Boorn-Konijnenberg et al (2017) Reactive Neutrophil Responses Dependent on the Receptor Tyrosine Kinase c-MET Limit Cancer Immunotherapy. Immunity 47: 789-802 e9
- Tong, Q., S. Ouyang, R. Chen et al (2019) MYCN-mediated regulation of the HES1 promoter enhances the chemoresistance of small-cell lung cancer by modulating apoptosis. Am J Cancer Res 9: 1938-1956
- Li, Y., H. Zhang, X. Zhu et al (2015) Oncolytic adenovirus-mediated short hairpin RNA targeting MYCN gene induces apoptosis by upregulating RKIP in neuroblastoma. Tumour Biol 36: 6037-43
- Petroni, M., V. Veschi, A. Prodosmo et al (2011) MYCN sensitizes human neuroblastoma to apoptosis by HIPK2 activation through a DNA damage response. Mol Cancer Res 9: 67-77
- Yang, T.W., Y.H. Gao, S.Y. Ma et al (2017) Low-grade slightly elevated and polypoid colorectal adenomas display differential beta-catenin-TCF/LEF activity, c-Myc, and cyclin D1 expression. World J Gastroenterol 23: 3066-3076
- Sipos, F., G. Firneisz, and G. Muzes (2016) Therapeutic aspects of c-MYC signaling in inflammatory and cancerous colonic diseases. World J Gastroenterol 22: 7938-50
- Ettl, T., S. Viale-Bouroncle, M.G. Hautmann et al (2015) AKT and MET signalling mediates antiapoptotic radioresistance in head neck cancer cell lines. Oral Oncol 51: 158-63
- Jo, E.B., Y.S. Lee, H. Lee et al (2019) Combination therapy with c-met inhibitor and TRAIL enhances apoptosis in dedifferentiated liposarcoma patient-derived cells. BMC Cancer 19: 496
- Jiang, L., W. Meng, G. Yu et al (2019) MicroRNA-144 targets APP to regulate AML1/ETO(+) leukemia cell migration via the p-ERK/c-Myc/MMP-2 pathway. Oncol Lett 18: 2034-2042
- Gialeli, C., D. Nikitovic, D. Kletsas et al (2014) PDGF/PDGFR signaling and targeting in cancer growth and progression: Focus on tumor microenvironment and cancer-associated fibroblasts. Curr Pharm Des 20: 2843-8
- Noriega-Guerra, H. and V.M. Freitas (2018) Extracellular Matrix Influencing HGF/c-MET Signaling Pathway: Impact on Cancer Progression. Int J Mol Sci 19
- Kwon, Y., B.D. Smith, Y. Zhou et al (2015) Effective inhibition of c-MET-mediated signaling, growth and migration of ovarian cancer cells is influenced by the ovarian tissue microenvironment. Oncogene 34: 144-53
- Jayasooriya, R., M.G. Dilshara, W. Karunarathne et al (2018) Camptothecin enhances c-Myc-mediated endoplasmic reticulum stress and leads to autophagy by activating Ca(2+)-mediated AMPK. Food Chem Toxicol 121: 648-656
- Gargini, R., V. Garcia-Escudero, M. Izquierdo et al (2016) Oncogene-mediated tumor transformation sensitizes cells to autophagy induction. Oncol Rep 35: 3689-95
- Balakumaran, B.S., A. Porrello, D.S. Hsu et al (2009) MYC activity mitigates response to rapamycin in prostate cancer through eukaryotic initiation factor 4E-binding protein 1-mediated inhibition of autophagy. Cancer Res 69: 7803-10
- Liu, Y., J.H. Liu, K. Chai et al (2013) Inhibition of c-Met promoted apoptosis, autophagy and loss of the mitochondrial transmembrane potential in oridonin-induced A549 lung cancer cells. J Pharm Pharmacol 65: 1622-43
- Lampada, A., J. O'Prey, G. Szabadkai et al (2017) mTORC1-independent autophagy regulates receptor tyrosine kinase phosphorylation in colorectal cancer cells via an mTORC2-mediated mechanism. Cell Death Differ 24: 1045-1062
- Cianfanelli, V., C. Fuoco, M. Lorente et al (2015) AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-Myc dephosphorylation and degradation. Nat Cell Biol 17: 20-30
- Zhang, P., Z. Zheng, L. Ling et al (2017) w09, a novel autophagy enhancer, induces autophagy-dependent cell apoptosis via activation of the EGFR-mediated RAS-RAF1-MAP2K-MAPK1/3 pathway. Autophagy 13: 1093-1112
- Koustas, E., M.V. Karamouzis, C. Mihailidou et al (2017) Co-targeting of EGFR and autophagy signaling is an emerging treatment strategy in metastatic colorectal cancer. Cancer Lett 396: 94-102
- Lehmann-Werman, R., D. Neiman, H. Zemmour et al (2016) Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proc Natl Acad Sci U S A 113: E1826-34
- Kumar, P., L.W. Dillon, Y. Shibata et al (2017) Normal and Cancerous Tissues Release Extrachromosomal Circular DNA (eccDNA) into the Circulation. Mol Cancer Res 15: 1197-1205
- Vogelstein, B., N. Papadopoulos, V.E. Velculescu et al (2013) Cancer genome landscapes. Science 339: 1546-58
- Arko-Boham, B., N.A. Aryee, R.M. Blay et al (2019) Circulating cell-free DNA integrity as a diagnostic and prognostic marker for breast and prostate cancers. Cancer Genet 235-236: 65-71
- Sun, K., P. Jiang, A.I.C. Wong et al (2018) Size-tagged preferred ends in maternal plasma DNA shed light on the production mechanism and show utility in noninvasive prenatal testing. Proc Natl Acad Sci U S A 115: E5106-E5114
- Sin, S.T.K., P. Jiang, J. Deng et al (2020) Identification and characterization of extrachromosomal circular DNA in maternal plasma. Proc Natl Acad Sci U S A 117: 1658-1665
- Ye, Q., S. Ling, S. Zheng et al (2019) Liquid biopsy in hepatocellular carcinoma: circulating tumor cells and circulating tumor DNA. Mol Cancer 18: 114