
1. Introduction 

Individuals are unavoidably exposed to environ-
ments containing heavy metals, and these elements 
can infiltrate the human body via ingestion and in-
halation[1]. The threat of heavy metals to human 
health continues to exist and has now become a 

global public health issue. Heavy metals typically 
function by displacing essential metal ions in the hu-
man body[2], leading to disruptions in critical biologi-
cal pathways. Such disruptions can result in endothe-
lial cell damage[3-5], disturbances in lipid me-
tabolism[6], increased oxidative stress[7, 8], immune 
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homeostasis imbalance[9, 10], and epigenetic modifi-
cations[11], all of which may contribute to the devel-
opment of various cardiovascular diseases. Exposure 
to heavy metals during pregnancy has been linked to 
an increased risk of congenital heart defects in off-
spring [12, 13]. Additionally, exposure in preschool 
children may lead to arrhythmias[14], while heavy 
metal exposure has been associated with hyperten-
sion[15]. The impact of exposure to some heavy met-
als on the incidence of heart failure has also been 
studied[16, 17].  

Heart failure isn't a standalone illness but rather 
the end stage of various heart diseases, which con-
tinues to be a significant contributor to mortality, mor-
bidity, and diminished quality of life globally[18]. Heart 
failure impacts the health of more than 60 million 
people worldwide[19], and the lifetime risk of heart 
failure has risen to 24%, roughly one in four people 
will develop heart failure in their lifetime[20]. Re-
search indicates a significant correlation between 
cadmium exposure and the incidence of heart 
failure[21-24]. And the level of urinary antimony ap-
pears to be directly proportional to the risk of heart 
failure[25]. Besides, epidemiological research has 
indicated that exposure to cobalt and lead elevates 
the risk of heart failure[16, 26]. However, previous 
research has predominantly relied on conventional 
statistical methods, which exhibit limited flexibility in 
modeling complex relationships and often operate 
under restrictive assumptions regarding underlying 
data distributions[27]. Furthermore, much of the exist-
ing literature has focused on examining the effects of 
a single type of heavy metal in isolation. This ap-
proach may overlook potential interactions and cumu-
lative effects of multiple heavy metals, thereby limit-
ing the comprehensiveness of the findings. Thus, a 
more integrated and flexible modeling framework, 
machine learning, may be necessary to capture the 
intricacies of heavy metal exposure and its mul-
tifaceted impact on heart failure risk. 

Our study conducted a comprehensive analysis of 
laboratory indicators for various heavy metal ele-
ments in both blood and urine, utilizing data from the 
National Health and Nutrition Examination Survey 
(NHANES) database spanning 2003 to 2020. This 
robust database provides high-quality, nationally rep-
resentative data essential for public health research, 
integrating interviews, physical examinations, and 
laboratory assessments. Furthermore, we employed 
advanced machine learning algorithms for the analy-
sis, enhancing our ability to uncover meaningful rela-

tionships within the data. Machine learning tends to 
prioritize predictive performance and generalization 
over interpretability, with a mathematical emphasis on 
cross-validation and iterative enhancement of algo-
rithms[28]. This implies that machine learning algo-
rithms frequently outshine traditional statistical predic-
tion methods, however, less transparent compared to 
conventional statistical approaches. Consequently, 
there is a need for explanatory models in machine 
learning. SHAP (SHapley Additive exPlanations) is a 
technique for interpreting machine learning models, 
employing the computation of Shapley values to as-
certain the contribution of each feature to a given 
prediction, and thus facilitates the generation of 
transparent explanations by leveraging these calcu-
lated Shapley values[29, 30]. In this study, we chose 
five machine learning algorithms for our analysis, 
identified the best-performing model, and utilized the 
SHAP model for interpreting.  

2. Method

2.1. Data Source 
All variable information was sourced from the 

NHANES (the National Health and Nutrition Examina-
tion Survey) database (https://wwwn.cdc.gov/Nchs/
Nhanes). The NHANES database, carried out by the 
Centers for Disease Control and Prevention (CDC) in 
the United States, combines interviews, laboratory 
tests and physical examinations on a nationally rep-
resentative sample of American residents every two 
years. We downloaded the variables data from the 
annual datasets of NHANES 2003-2004, NHANES 
2005-2006, NHANES 2007-2008, NHANES 
2009-2010, NHANES 2011-2012, NHANES 
2013-2014, NHANES 2015-2016, NHANES 
2017-2018, and NHANES 2019-2020, match all vari-
ables for each year by the unique sequence num-
bers, and ultimately merged the datasets for all the 
years. The features and labels encompassed in the 
study include gender, age (year), race, education lev-
el, poverty-to-income ratio (PIR), height, weight, body 
mass index (BMI, kg/m^2), urinary heavy metals (in-
cluding urine mercury, urine barium, urine beryllium, 
urine cadmium, urine cobalt, urine cesium, urine 
molybdenum, urine lead, urine platinum, urine anti-
mony, urine thallium, urine tungsten, urine uranium, 
urine arsenous acid, urine arsenobetaine, urine ar-
senocholine, urine dimethylarsonic acid, urine 
monomethylacrsonic acid, urine total arsenic, and 
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urine iodine), blood heavy metals (including blood 
cadmium, blood lead, blood mercury), and heart fail-
ure. The diagnosis of heart failure is ascertained 
through self-reported physician diagnoses acquired 
via standardized medical questionnaires in individual 
interviews. Participants were queried: "Has a doctor 
or other health professional ever told that you had 
congestive heart failure?” If a person responds 'yes', 
they will be regarded as having heart failure. Accord-
ing to the 10th revised edition of the International 
Classification of Diseases and Related Health Prob-
lems (ICD-10), the code for congestive heart failure is 
I50.0, I50.1, I50.9[31]. Heavy metal samples in blood 
and urine were processed, stored, and transported to 
the Centers for Disease Control and Prevention and 
the Science Department of the Environmental Health 
Laboratory of the National Environmental Health Cen-
ter for analysis. 

2.2. Study Population
The inclusion criteria were as follows: (1) partici-

pants were aged 50 or above; (2) participants under-
went heavy metal laboratory testing in blood and 
urine samples; (3) heart failure status was 1 (ever 
had a heart failure) or 2 (didn’t have a heart failure) 
based on the NHANES questionnaires. Exclusion cri-
teria were as follows: (1) heart failure status was 7 
(refused to answer this question) or 9 (means uncer-
tain heart failure status) according to NHANES ques-
tionnaires. Finally, a total of 6879 participants were 
included in the present analysis. 

2.3. Statistical Analysis
2.3.1.Statistical Description of Baseline 

Characteristics Between Heart Failure 
Group and no Heart Failure Group 

The demographic description section was ana-
lyzed using R 4.2.3. In the baseline table, we divided 
the participants into the heart failure group and the no 
heart failure group for comparison. The baseline co-
variates were presented as mean (standard devia-
tion) for continuous variables and count (percentage) 
for categorical variables, respectively. The t tests and 
χ2 tests were employed to compare the differences 
between the groups for continuous and categorical 
variables, separately. variables associated with heavy 
metals concentration were depicted using geometric 
mean and geometric standard deviation.  

2.3.2.Machine Learning Processing
2.3.2.1.Data Preprocessing and Splitting

The analysis of the machine learning section is 
accomplished using Python 3.10.8 and Python li-
braries, including “sklearn”, “imblearn”, “numpy”, and 
“pandas”. An overview of our methodology is pre-
sented in (Figure 1). BMI, age, gender, blood heavy 
metals, and urinary heavy metals were selected as 
feature variables, and heart failure as the target vari-
able for the machine learning model. “missForest” 
was used for missing value imputation, which is an 
iterative imputation approach based on random forest 
method and can concurrently interpolate different 
types of data[32]. The raw data was standardized us-
ing the “StandardScaler” function. The dataset was 
randomly split into a training set (N=5159) and a test-
ing set (N=1720) in accordance with a specific ratio, 
with the training set constituting 75% of all the 
dataset. We calculated the Pearson correlation coef-
ficients of all predictor variable in the training set and 
plotted heatmaps respectively before and after delet-
ing highly correlated variables (Supplementary figure 
1). To reduce the influence of multicollinearity on the 
model, features with Pearson coefficients exceeding 
0.8 were removed[33]. The low variance features 
have been removed, which possess limited explana-
tory information and make a minor contribution to the 
model's predictive capacity.  
2.3.2.2.Feature Selection and Model Training

After the initial feature filtering via the above-men-
tioned steps, we incorporated a pipeline consisting of 
"RandomUnderSample", "SelectKBest", and the 
model classifier for the subsequent analysis. Among 
the pipeline process, RUS (RandomUnderSample) is 
a sampling method that can create balanced classes 
from imbalanced ones[34, 35], and “SelectKBest" is a 
feature selection method that functions by scoring all 
features and selecting the top “k” input variables with 
the highest scores[36] (mutual information was se-
lected as the scoring metric, with higher scores indi-
cat ing a stronger correlat ion between the 
variables[37]). Grid search was used for hyperpara-
meter tuning, thereby selecting the optimal hyperpa-
rameter values for each machine learning model[38] 
(The detailed parameter information for the model is 
provided in the supplementary materials). We chose 
five machine learning models: SVM (Support Vector 
Machine), RF (Random Forest), XGBoost (eXtreme 
Gradient Boosting), GDBT (Gradient Boosting Deci-

38



Yuting Yang et al. IJCMP | Vol. 1 No. 2 (February 2025)

sion Tree), and KNN (k-nearest neighbor). Among 
them, the GDBT was found to be the best one.  
2.3.2.3.Model Evaluation and Comparison

To conduct a thorough and systematic comparison 
of the machine learning models, we employed a mul-
tifaceted approach that included generating various 
evaluation plots alongside calculating a comprehen-
sive set of performance metrics both in the training 
and testing sets. Specifically, we constructed Receiv-
er Operating Characteristic (ROC) curves, precision-
recall (PR) curves, and confusion matrices. The ROC 
curves provide insight into the model’s diagnostic ca-
pabilities and the PR curves offer a focused analysis 
of the model’s performance in classifying positive 
cases, particularly in imbalanced datasets. Confusion 
matrices were used to provide a detailed breakdown 
of the models’ classification results, highlighting the 
number of true positives, true negatives, false posi-
tives, and false negatives. We further calculated a 
comprehensive suite of quantitative metrics, including 
accuracy, specificity, precision, sensitivity (recall), 
negative predictive value (NPV), positive predictive 
value (PPV), false positive rate (FPR), false negative 
rate (FNR), false discovery rate (FDR), the F1 score, 
and the Brier score. These metrics collectively eluci-
dated the models’ classification efficacy, with the F1 
score serving to balance precision and recall and the 
Brier score reflecting the probabilistic accuracy of 
predictions. Moreover, we evaluated the area under 
the ROC curve (AUC) and its 95% confidence inter-
vals as a measure of the models' overall ability to dis-
tinguish between positive and negative classes, com-
plemented by the average precision score (AP) to 
quantify performance in scenarios characterized by 
class imbalance.  
2.3.2.4.Model Explanation

In the explanation section of the optimal model, we 
calculated the PI (permutation importance) values of 
each feature in the model, constructed the SHAP 
(SHapley Additive exPlanations) explanation model 
using the “shap” package[39], and plotted ICE (Indi-
vidual Conditional Expectation) plot and PDP (Partial 
Dependence Plot) to respectively demonstrate the 
impact of a single feature and two features on the 
target. 

3. Results

3.1. Baseline Characteristics
Among 6,879 participants, 388 were diagnosed 

with heart failure, while 6,491 were classified as hav-
ing no heart failure. As illustrated in Table 1, a sub-
stantial proportion of the baseline characteristics ex-
hibited significant statistical differences between the 
heart failure group and the group without heart fail-
ure. Compared to participants without heart failure, 
those in the heart failure group exhibited a higher age 
(69.74 ± 8.39 versus 65.33 ± 9.04; P<0.01), a 
greater proportion of male participants (60.1% versus 
49.6%; P<0.01), and an elevated BMI (32.92 ± 16.51 
versus 29.53 ± 7.22; P<0.01). Besides, significant 
statistical differences (P Value < 0.05) were observed 
in the laboratory indicators of heavy metals, including 
blood cadmium, blood lead, blood mercury, urinary 
beryllium, urinary cadmium, urinary cesium, urinary 
antimony, urinary thallium, urinary tungsten, urinary 
uranium, urinary dimethylarsonic acid, urinary total 
arsenic, and urinary iodine, between the two partici-
pant groups.  
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This flowchart outlines the key steps in developing a machine 
learning model from inception to interpretation.

Figure 1 | Machine learning model development 
flowchart.
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All continuous demographic variables are presented as mean (standard deviation), while the categorical variables are presented as 
frequency (percentage). Variables related to heavy metals are represented using geometric mean (geometric standard deviation). 
Statistical comparisons between the heart failure and no heart failure groups were conducted using Student's t-test for continuous 
variables and chi-square tests for categorical variables, with a significance level set at p < 0.05. BMI: Body Mass Index is calculated 
as weight in kilograms divided by the square of height in meters; PIR: Poverty to Income Ratio is calculated based on household in-
come relative to the federal poverty line.

Table 1 | Baseline characteristics of study participants
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3.2. Comparison of Machine Learning Models
Considering our dataset is imbalanced, perfor-

mance metrics that account for class distribution, 
such as sensitivity (recall), precision, F1 score, and 
AUC, become more crucial in determining which 
model is the best, compared with other evaluating 
indicators. Figure 2 illustrates the ROC curves and 
PR curves for the five machine learning models for 
the training set, presented separately. The AUC for 
GBDT was 0.92 (95% CI: 0.91-0.93), indicating supe-
rior predictive performance in distinguishing heart 
failure compared to the four other models. The RF 
yielded an AUC of 0.84 (95% CI: 0.82-0.86), which 
was similar to that of XGBoost, at 0.84 (95% CI: 0.82-
0.86), suggesting robust performance. In contrast, the 
SVM achieved an AUC of 0.78 (95% CI: 0.76-0.81), 
while the K-Nearest Neighbors (KNN) model had an 
AUC of 0.74 (95% CI: 0.71-0.76), indicating a moder-

ate discrimination ability. Besides, GBDT stand out 
with the highest average precision score, demonstrat-
ing superior capability in maintaining precision and 
better diagnostic accuracy in heart failure compared 
to other models. Table 2 presents specific evaluation 
metrics for five machine learning models. GBDT 
achieves a sensitivity of 0.93, indicating excellent true 
positive identification. In contrast, KNN and SVM ex-
hibit considerably lower sensitivities of 0.56 and 0.61, 
respectively, resulting in a greater likelihood of miss-
ing actual heart failure cases. Overall, GBDT demon-
strates distinct advantages over KNN, RF, SVM, and 
XGBoost based on these performance metrics. Its 
superior sensitivity (0.93), Average Precision Score 
(APS) of 0.42, and accuracy of 0.78 position GBDT 
as an exceptional choice for predictive modeling in 
scenarios where both precision and recall are essen-
tial. The ROC curves and PR curves for the testing 
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The figure depicts the ROC curves and PR curves for 5 predictive models: GBDT, KNN, RF, SVM, and XGBoost. Each model’s per-
formance is shown, demonstrating its ability to distinguish between the positive and negative classes (ROC) and the balance be-
tween precision and recall (PR). 

Figure 2 | ROC and PR curves of the five models in the training set

NPV: Negative Predictive Value. FPR: False Positive Rate. FNR: False Negative Rate. FDR: False Discovery Rate. F1 score: The 
harmonic mean of precision and recall, calculated as 2 * (Precision * Recall) / (Precision + Recall). AUC: Area Under the Curve. AP: 
Average Precision.

Table 2 | Evaluation indicators for predictive models.
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set are presented in supplementary figure 2, and 
supplementary figure 3 displays the corresponding 
confusion matrices.  

3.3. The Explainability of the Best Machine 
Learning Model

3.3.1.SHAP Visualization Plot
Figure 3A presents a SHAP heatmap that offers a 

comprehensive visualization of the contributions of 
various features to the predictions made by GBDT 
regarding heart failure risk. The model's output is 
shown above the heatmap, centered around the ex-
pected SHAP values for all observations. Additionally, 
the global importance of each input feature is depict-
ed as a bar plot on the right side of the heatmap. No-
tably, BMI, urinary iodine, age, and blood cadmium 
emerge significant contributors to the model's predic-
tions. Figure 3B presents the SHAP beeswarm plot 
for GBDT, illustrating the relationship between feature 
values and the risk of heart failure. Features such as 
urinary iodine, blood cadmium, urinary cobalt, body 
mass index (BMI), and age occupy the top positions 
and exhibit significant positive SHAP values, suggest-
ing a strong association with an increased risk of 
heart failure. Urinary tungsten, urinary cadmium, and 
urinary arsenic acid are positioned further down the 
y-axis with lower SHAP value, indicating a minimal 
positive contribution to the risk of heart failure. Inter-
estingly, lower levels of urinary beryllium, urinary 
lead, urinary cesium, and urinary barium are associ-
ated with higher SHAP values, suggesting a potential 
protective effect against heart failure. The SHAP de-

cision plot for GBDT is illustrated in Figure 3C. Each 
line represents an individual participant, with the tra-
jectory of each line converging from the bottom and 
extending toward the top indicating how the features 
influence the model's output for specific instances. 
Figure 4 depicts the SHAP interaction summary plot, 
where the horizontal axis represents interaction val-
ues that quantify the attribution of paired interaction 
effects between two features. Most variables demon-
strate varying degrees of interaction effects. Features 
such as age, urinary beryllium, urinary tungsten, and 
BMI exhibit significant interaction effects with other 
variables, indicating the complex relationships that 
influence heart failure risk.  
3.3.2.Permutation Importance Analysis

The permutation importance analysis was con-
ducted to estimate the contribution of features to the 
prediction of heart failure risk within GBDT by mea-
suring the decrease in the model’s performance when 
the values of a feature were randomly shuffled (Fig-
ure 5). The results revealed that urinary beryllium and 
blood cadmium exhibited the highest importance 
scores of 0.147 and 0.084 among the heavy metal 
variables, indicating their significant influence on pre-
dictive accuracy. Age and BMI were identified as im-
portant determinants, with scores of 0.123 and 0.108, 
respectively.  
3.3.3.ICE Plot and PDP Plot

The ICE plots (Figure 6), generated through partial 
conditional expectation, illustrated that heart failure 
risk increases with rising levels of age, BMI, and 
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Figure 3A: SHAP heatmap. The y-axis displays different features arranged in descending order based on their maximum absolute 
SHAP values, indicating their relative contributions to the prediction of heart failure outcomes. The x-axis represents individual obser-
vations from the dataset. Each cell in the heatmap is color-coded to reflect the SHAP values, with red indicating positive contributions 
to heart failure risk and blue representing negative contributions. Figure 3B: SHAP beeswarm map. The features on the y-axis are 
organized in the same order as those in the heatmap. The x-axis quantifies the SHAP values, reflecting the impact of each feature on 
the model's predictions. Each point on the plot corresponds to a specific observation, with colors representing feature value levels; 
red indicates higher levels while blue denotes lower levels. Figure 3C: SHAP decision map. Illustrates individual predictions in rela-
tion to the cumulative effects of features, showing how each feature contributes to the final decision. Blue indicates negative predic-
tions, while red indicates positive predictions.

Figure 3 | SHAP visualizations for model interpretation
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blood cadmium, highlighting their potential as critical 
risk factors in assessments of heart failure. The rela-
tionship between urinary beryllium and heart failure 
risk was characterized by an inverted U-shaped 
curve, suggesting that risk is heightened within a 
specific range of exposure. Other assessed features 
displayed moderate effects, indicating their contribu-
tion to prediction but with less pronounced impacts. 
Additionally, the two-dimensional PDP plot clarified 
the joint predictive effects of the top three heavy 
metal variables in the permutation importance analy-
sis, alongside age and gender, on heart failure risk 
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Illustrate the combined effects of two features on 
model predictions. 

Figure 4 | SHAP interaction plot

The figure evaluates the contribution of individual features to the model’s pre-
dictive performance through permutation importance analysis. Figure 5A: Bar 
plot of feature importance scores, ranking the features according to their sig-
nificance. Figure 5B: Table displaying the feature importance scores.

Figure 5 | Premutation importance analysis

This figure presents the ICE diagrams for each feature, enabling 
the examination of the effect of a single variable on predictions 
while eliminating the noise introduced by interactions with other 
features. Each thin blue line in the plot represents an individual 
observation, showcasing how the predicted response varies as 
the feature value changes, and each orange dashed line repre-
sents the average level. 

Figure 6 | Individual conditional Expectation (ICE) 
plots

This plot offers a comprehensive visualization of the interac-
tive influence of age and BMI on the predicted outcomes as-
sociated with the top three metals ranked by importance. 
Lighter shades represent lower predicted outcomes, while 
darker shades indicate higher predictions. The equipotential 
lines illustrate levels of constant predicted outcomes across 
the combinations of the two features, signifying that any point 
along a given line produces the same average predicted re-
sponse from the model. 

Figure 7 | Two-Dimensional Partial Dependence Plot 
(PDP)
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(Figure 7). The color gradient ranges from deep blue, 
indicating higher risk, to light green, reflecting lower 
risk. Notably, blood cadmium interacted synergistical-
ly with age and gender, suggesting potential com-
bined effects on heart failure risk assessment. 

4.  Discussion

This study employed five machine learning models 
to explore the complex relationship between heavy 
metal exposure in blood and urine and the risk of 
heart failure. Following a thorough evaluation of vari-
ous model performance metrics, the GBDT model 
was chosen as the optimal predictive model due to its 
superior accuracy and interpretability. To further ex-
plain the findings derived from GBDT, several ma-
chine learning interpretability techniques were ap-
plied, including SHAP (SHapley Additive exPlana-
tions), permuted Feature Importance, individual con-
ditional expectation (ICE), and partial dependence 
plots (PDP). These methods enabled a comprehen-
sive assessment of the individual contributions of 
each feature to heart failure risk, as well as interac-
tions between pairs of features, offering valuable in-
sights into the prediction on heart failure. Notably, the 
interplay between different heavy metals and other 
demographic factors, such as age and BMI, suggests 
that risk assessments for heart failure must consider 
these complex interactions. Understanding these re-
lationships not only furthers our knowledge of envi-
ronmental determinants of cardiovascular disease but 
also emphasizes the need for continuous monitoring 
and potential regulatory measures regarding heavy 
metal exposure.  

GBDT, the best prediction machine learning model 
in our study, is an ensemble learning technique that 
sequentially builds multiple decision trees, with each 
tree trained to correct the errors of its predecessor. 
The iterative approach allows GBDT to progressively 
minimize the residual errors through a method known 
as gradient descent[40, 41]. GBDT exhibits robust-
ness against overfitting and has superior predictive 
accuracy compared to traditional models[41]. The ca-
pacity of GBDT to capture complex nonlinear rela-
tionships within the data is particularly pertinent in the 
context of researches where the relationships be-
tween features and targets are intricate, such as our 
study about the complex relationship between heavy 
metals and the risk of heart failure. In this study, we 
specifically focused on participants aged 50 years 
and older within the NHANES database. This demo-

graphic selection is particularly important given that 
older adults not only experience higher morbidity 
rates[42] but also significantly elevated mortality risks 
associated with heart failure[43]. Our analysis pre-
dominantly centered on heavy metals detected in 
blood and urine, underscoring our intent to investi-
gate the impact of these environmental exposures on 
heart failure, intentionally setting aside other preva-
lent cardiovascular risk factors. And considering that 
our primary goal was to develop a robust predictive 
model capable of identifying at-risk individuals based 
on their exposure to heavy metals, we prioritized pre-
dictive accuracy over population-level inferences and 
chose not to apply sample weights in our analysis. 
Moreover, the NHANES database provides a large 
and diverse sample size conducive to model con-
struction, alleviating concerns regarding the need for 
weighting and allowing us to derive meaningful in-
sights from the unweighted data while maintaining a 
clear focus on predictive performance. 

Our findings complement existing studies and, in 
certain instances, corroborate prior researches. 
Specifically, we found that blood cadmium is a posi-
tive predictor of heart failure, supporting previous 
findings. Major sources of cadmium exposure in the 
population include smoking and passive smoking[44, 
45]. A case-cohort study reported that higher urinary 
cadmium levels are associated with an increased 
overall incidence of heart failure, with a hazard ratio 
(HR) of 1.1 per interquartile range difference (95% CI: 
1.0-1.2)[17]. Furthermore, blood cadmium has been 
identified as an independent risk factor for heart fail-
ure, demonstrating an OR of 1.345 (p < 0.001)[46]. 
Similarly, an association study revealed a quantitative 
correlation between cadmium levels and heart failure 
risk, showing that a 50% increase in blood cadmium 
corresponds to a 48% increase in heart failure risk 
(OR: 1.48; 95% CI: 1.17-1.87), while a similar in-
crease in urinary cadmium is associated with a 12% 
increase in risk (OR: 1.12; 95% CI: 1.03-1.20)[21]. 
The relationship between beryllium and lung cancer 
has been extensively researched[47], but its effects 
on cardiovascular health are less understood. Emerg-
ing studies suggest that beryllium exposure may in-
crease the risk of cardiovascular disease[48], with 
significant associations observed in individuals with 
close contact to the metal, who demonstrate a 
heightened r isk of ischemic heart disease 
mortality[49]. Cobalt, often found in human joint re-
placement implants, has also garnered attention due 
to its health implications[50]. Our research highlights 
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that cobalt exposure is linked to an increased risk of 
heart failure. A controlled trial indicated that patients 
undergoing multiple hip replacement surgeries exhib-
ited significantly elevated myocardial cobalt levels, 
with autopsy reports revealing a prevalence of dilated 
heart chambers and decreased ejection fraction 
among these individuals[51]. In addition, we found 
that tungsten and arsenic also elevate the risk of 
heart failure. While both heavy metals are prevalent 
in the environment, research on their cardiovascular 
effects remains limited. A cross-sectional study indi-
cated a positive correlation between urinary tungsten 
and cardiovascular disease risk[52, 53], and arsenic 
acid poisoning has been associated with significant 
alterations in heart rate, QRS duration, and symp-
toms of prolonged QT and QTc intervals due to ar-
senic acid poisoning[54]. In our study, we explored 
the combined effects of heavy metals, body mass in-
dex (BMI), and age on heart failure risk. Previous in-
vestigations have shown that heavy metals can sig-
nificantly increase abdominal circumference and obe-
sity rates, which may explain the observed synergistic 
effects of BMI and metals such as cadmium[55-57]. 
Additionally, there is a documented correlation be-
tween age and the duration of heavy metal exposure 
[58], and excessive accumulation of heavy metals in 
the human body may increase the risk of PhenoAge 
acceleration[59]. 

The value of our research lies in its multifaced ap-
proach, leveraging advanced computational tech-
niques to enhance the understanding of environmen-
tal risk factors associated with heart failure. By inte-
grating machine learning, we move beyond traditional 
statistical methods, enabling the identification of 
complex, nonlinear relationships. Furthermore, the 
significance of our findings contributes to the growing 
evidence linking heavy metals to adverse cardiovas-
cular outcomes, highlighting potentially modifiable 
risk factors for clinical practice and public health 
strategies. 

5. Limitation

While our study offers valuable insights into the 
relationship between heavy metal exposure and heart 
failure, several limitations warrant consideration. 
First, despite the GBDT model achieving an accuracy 
of 0.78, a high sensitivity of 0.93, and a strong AUC 
of 0.92, the model’s relatively low precision and FDR 
indicate a need for refinement in its predictive capa-

bilities. This suggests that the model may generate a 
considerable number of false positives, which can 
impact clinical decision-making. Second, while the 
use of machine learning algorithms has improved 
predictive accuracy compared to traditional methods, 
their inherent complexity may limit interpretability, 
which could impede acceptance in practical ap-
plications. Third, the cross-sectional design of the 
study restricts our ability to infer causality. While the 
observed associations are significant, they do not es-
tablish a direct cause-and-effect relationship between 
heavy metal exposure and heart failure outcomes. 

6. Conclusion 

In this study, GBDT demonstrated superior per-
formance in modeling the relationship between heavy 
metal exposure and heart failure. Our analysis re-
vealed that elevated concentrations of urinary iodine, 
blood cadmium, urinary cobalt, urinary tungsten, and 
urinary arsenic acid are significantly correlated with 
an increased risk of heart failure, while urinary beryl-
lium appears to have a potentially detrimental effect. 
Additionally, we uncovered a synergistic relationship 
involving both age and BMI that amplifies the adverse 
effects of heavy metal exposure on the risk of heart 
failure. These findings highlight the critical need for 
further research to explore the underlying mecha-
nisms and to inform targeted preventive measures 
and clinical strategies aimed at mitigating the risks 
associated with heavy metal exposure in vulnerable 
populations.
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This figure displays a correlation heatmap for each feature, with the numbers in each grid representing the Pear-
son correlation coefficients. Values close to +1 or -1 indicate strong positive or negative correlations, respectively, 
while values near 0 suggest little to no correlation. Panel A shows the heatmap prior to the removal of highly corre-
lated variables, whereas Panel B presents the heatmap after these variables have been eliminated. 

Supplementary Figure 1 | Correlation Heatmap of Features

Supplementary Figure 2 | ROC and PR curves of the five models in the testing set

Each cell in the matrix indicates the number of instances classified into each category.

Supplementary Figure 3 | Confusion matrix of the five models


