Skip to main navigation menu Skip to main content Skip to site footer

Development of Poly(p-phenylene vinylene)-Derived Near-inFrared Two-Photon Fluorescent Dyes and Nucleus-Specific Fluorescent Probes

Abstract

PPV, an early air-stable conjugated polymer, is widely used in organic electronics and bioimaging due to its simple structure and UV-Vis spectral properties. This chapter explores the design, synthesis, and potential applications of near-infrared two-photon fluorescent dyes derived from PPV. Small molecule dyes (HO-PPV-X) with improved water solubility and strong push-pull structures were created by modifying PPV. Three synthesized dyes, HO-PPV-3CN, HO-PPV-MePy, and HO-PPV-EtBT, showed good solubility and near-infrared fluorescence. Live-cell imaging revealed different cellular localization: HO-PPV-3CN stained cytoplasm, HO-PPV-MePy stained the whole cell, and HO-PPV-EtBT targeted the nucleus. These findings suggest potential for developing fluorescent probes and diagnostic reagents with specific subcellular localization functions, especially HO-PPV-EtBT for nuclear staining.

Keywords

subcellular localization, nucleus-localized fluorescent probe, two-photon imaging

PDF

References

  1. Chiang, C.K.; Fincher, J.C.R.; Park, Y.W.; Heeger, A.J.; Shirakawa, H.; Louis, E.J.; Gau, S.C.; MacDiarmid, A.G. Electrical Conductivity in Doped Polyacetylene : Phys. Rev. Lett. 39 (1977) 1098 (The Nobel Prize in Chemistry to Dr. Hideki Shirakawa). 2001; pp. 572-575.
  2. Heeger, A.J. Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials (Nobel Lecture) Copyright(c) The Nobel Foundation 2001. We thank the Nobel Foundation, Stockholm, for permission to print this lecture. Angewandte Chemie (International ed. in English) 2001, 40, 2591-2611. doi:10.1002/1521-3773(20010716)40:142591::AID-ANIE25913.0.CO;2-0.
  3. Swager, T.M. 50th Anniversary Perspective: Conducting/Semiconducting Conjugated Polymers. A Personal Perspective on the Past and the Future. Macromolecules 2017, 50, 4867-4886. doi:10.1021/ACS.MACROMOL.7B00582
  4. Kraft, A.; Grimsdale, A.C.; Holmes, A.B. Electroluminescent Conjugated Polymers — Seeing Polymers in a New Light. ChemInform 1998, 37, 402-428. doi:10.1002/(SICI)1521-3773(19980302)37:4402::AID-ANIE4023.0.CO;2-9
  5. Banerjee, J.; Dutta, K. A short overview on the synthesis, properties and major applications of poly(p-phenylene vinylene). Chemical Papers 2021, 5139-5151. doi:10.1007/s11696-020-01492-9
  6. Mann, A.; Hannigan, M.D.; Weck, M. Cyclophanediene and Cyclophanetriene‐Based Conjugated Polymers. Macromolecular Chemistry and Physics 2022, 224, 2200397. doi:10.1002/macp.202200397
  7. Sil, A.; Maity, A.; Giri, D.; Patra, S.K. A phenylene–vinylene terpyridine conjugate fluorescent probe for distinguishing Cd 2+ from Zn 2+ with high sensitivity and selectivity. Sensors and Actuators B-chemical 2016, 226, 403-411. doi:10.1016/J.SNB.2015.11.106
  8. Feng, Q.; Zhang, Z.; Yuan, Q.; Yang, M.; Zhang, C.; Tang, Y. Conjugated oligomer-based ultrasensitive fluorescent biosensor for activatable imaging of endogenous NQO1 with High catalytic efficiency in cancer cells. Sensors and Actuators B: Chemical 2020, 312, 127981. doi:10.1016/j.snb.2020.127981
  9. Gao, C.; Liu, S.Y.; Zhang, X.; Liu, Y.K.; Qiao, C.D.; Liu, Z.E. Two-photon fluorescence and fluorescence imaging of two styryl heterocyclic dyes combined with DNA. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy 2016, 156, 1-8. doi:10.1016/j.saa.2015.11.014
  10. Fabijanić, I.; Kurutos, A.; Paić, A.T.; Tadić, V.; Kamounah, F.S.; Horvat, L.; Brozovic, A.; Crnolatac, I.; Stojković, M.R. Selenium-Substituted Monomethine Cyanine Dyes as Selective G-Quadruplex Spectroscopic Probes with Theranostic Potential. Biomolecules 2023, 13, 128. https://doi.org/10.3390/biom13010128.
  11. Šmidlehner, T.; Kurutos, A.; Slade, J.; Belužić, R.; Ang, D.L.; Rodger, A.; Piantanida, I. Versatile Click Cyanine Amino Acid Conjugates Showing One-Atom-Influenced Recognition of DNA/RNA Secondary Structure and Mitochondrial Localisation in Living Cells. European Journal of Organic Chemistry 2018, 2018, 1682–1692. https://doi.org/10.1002/ejoc.201701765.
  12. Abeywickrama, C.S.; Bertman, K.A.; Pang, Y. From nucleus to mitochondria to lysosome selectivity switching in a cyanine probe: The phenolic to methoxy substituent conversion affects probe’s selectivity. Bioorganic Chemistry 2020, 99, 10384. https://doi.org/10.1016/j.bioorg.2020.103848.
  13. Kurutos, A.; Ilic-Tomic, T.; Kamounah, F.S.; Vasilev, A.A.; Nikodinovic-Runic, J. Non-cytotoxic photostable monomethine cyanine platforms: Combined paradigm of nucleic acid staining and in vivo imaging. Journal of Photochemistry and Photobiology a Chemistry 2020, 397, 112598. https://doi.org/10.1016/j.jphotochem.2020.112598.
  14. Alamudi, S.H.; Lee, Y.-A. Design strategies for organelle-selective fluorescent probes: where to start? RSC Advances 2025, 15, 2115–2131. https://doi.org/10.1039/d4ra08032g.
  15. Ishida, M.; Watanabe, H.; Takigawa, K.; Kurishita, Y.; Oki, C.; Nakamura, A.; Hamach, I.; Tsukiji, S. Synthetic Self-Localizing Ligands That Control the Spatial Location of Proteins in Living Cells. Journal of the American Chemical Society 2013, 135, 12684–12689. https://doi.org/10.1021/ja4046907.
  16. Gao, Y.; Wang, X.; He, X.; He, Z.; Yang, X.; Tian, S.; Meng, F.; Ding, D.; Luo, L.; Tang, B.Z. A Dual-Functional Photosensitizer for Ultraefficient Photodynamic Therapy and Synchronous Anticancer Efficacy Monitoring. Advanced Functional Materials 2019, 29, 1902673. https://doi.org/10.1002/adfm.201902673.
  17. Lu, Y.-J.; Deng, Q.; Hou, J.-Q.; Hu, D.-P.; Wang, Z.-Y.; Zhang, K.; Luyt, L.G.; Wong, W.-L.; Chow, C.-F. Molecular Engineering of Thiazole Orange Dye: Change of Fluorescent Signaling from Universal to Specific upon Binding with Nucleic Acids in Bioassay. ACS Chemical Biology 2016, 11, 1019–1029. https://doi.org/10.1021/acschembio.5b00987.
  18. Aristova, D.; Selin, R.; Heil, H.S.; Kosach, V.; Slominsky, Y.; Yarmoluk, S.; Pekhnyo, V.; Kovalska, V.; Henriques, R.; Mokhir, A.; Chernii, S. Trimethine Cyanine Dyes as NA-Sensitive Probes for Visualization of Cell Compartments in Fluorescence Microscopy. ACS Omega 2022, 7, 47734–47746. https://doi.org/10.1021/acsomega.2c05231.
  19. Zhou, B.; Liu, W.; Zhang, H.; Wu, J.; Liu, S.; Xu, H.; Wang, P. Imaging of nucleolar RNA in living cells using a highly photostable deep-red fluorescent probe. Biosensors and Bioelectronics 2014, 68, 189–196. https://doi.org/10.1016/j.bios.2014.12.055.
  20. Zheng, Y.-C.; Zheng, M.-L.; Chen, S.; Zhao, Z.-S.; Duan, X.-M. Biscarbazolylmethane-based cyanine: a two-photon excited fluorescent probe for DNA and selective cell imaging. Journal of Materials Chemistry B 2014, 2, 2301–2310. https://doi.org/10.1039/c3tb21860k.
  21. Peng, X.; Wu, T.; Fan, J.; Wang, J.; Zhang, S.; Song, F.; Sun, S. An Effective Minor Groove Binder as a Red Fluorescent Marker for Live-Cell DNA Imaging and Quantification. Angewandte Chemie International Edition 2011, 50, 4180–4183. https://doi.org/10.1002/anie.201007386.
  22. Sun, L.; Cho, H.J.; Sen, S.; Arango, A.S.; Huynh, T.T.; Huang, Y.; Bandara, N.; Rogers, B.E.; Tajkhorshid, E.; Mirica, L.M. Amphiphilic Distyrylbenzene Derivatives as Potential Therapeutic and Imaging Agents for Soluble and Insoluble Amyloid β Aggregates in Alzheimer's Disease. Journal of the American Chemical Society 2021, 143, 10462-10476. doi:10.1021/jacs.1c05470
  23. Sun, C.L.; Li, J.; Wang, X.-Z.; Shen, R.; Liu, S.; Jiang, J.-Q.; Li, T.; Song, Q.W.; Liao, Q.; Fu, H.; et al. Rational Design of Organic Probes for Turn-On Two-Photon Excited Fluorescence Imaging and Photodynamic Therapy. Chem 2019, 5, 600-616. doi:https://doi.org/10.1016/j.chempr.2018.12.001
  24. Cao, J.; Jiang, D.-M.; Ren, X.; Li, T.; Gong, X.-T.; Yang, Y.-R.; Xu, Z.-G.; Sun, C.L.; Shi, Z.-F.; Zhang, S.; et al. A highly selective two-photon probe with large turn-on signal for imaging endogenous HOCl in living cells. Dyes and Pigments 2017, 146, 279-286. doi:https://doi.org/10.1016/j.dyepig.2017.07.006
  25. Feng, X.; Feng, F.; Yu, M.; He, F.; Xu, Q.; Tang, H.; Wang, S.; Li, Y.; Zhu, D. Synthesis of a new water-soluble oligo(phenylenevinylene) containing a tyrosine moiety for tyrosinase activity detection. Organic letters 2008, 10, 5369-5372. doi:10.1021/ol802210s
  26. Messmore, B.W.; Hulvat, J.F.; Sone, E.D.; Stupp, S.I. Synthesis, self-assembly, and characterization of supramolecular polymers from electroactive dendron rodcoil molecules. Journal of the American Chemical Society 2004, 126, 14452-14458. doi:10.1021/ja049325w
  27. Kurutos, A.; Nikodinovic-Runic, J.; Veselinovic, A.; Veselinović, J.B.; Kamounah, F.S.; Ilic-Tomic, T. RNA-targeting low-molecular-weight fluorophores for nucleoli staining: synthesis, in silico modelling and cellular imaging. New Journal of Chemistry 2021, 45, 12818–12829. https://doi.org/10.1039/d1nj01659h.