Skip to main navigation menu Skip to main content Skip to site footer

Mendelian Randomization Study Evidence On The Association Between Herpes Simplex Virus Antibodies Immune Response And The Risk Of Drug-Induced Obesity

Abstract

This study utilized Mendelian randomization (MR) to investigate the causal link between immune response to herpes simplex virus antibodies and drug-induced obesity (DIO). Genome-wide association study (GWAS) data was analyzed using methods like Inverse Variance Weighted (IVW), MR-Egger, and Weighted Median method (WME). Effective instrumental variables were identified, showing a significant increase in DIO risk with Epstein-Barr virus ZEBRA antibody, herpes simplex virus 7 U14 antibody, herpes simplex virus type 1 IgG, and herpes simplex virus type 2 IgG seropositivity. Reverse MR analysis did not reveal a reverse causal relationship. The study provides initial evidence of the relationship between herpes simplex virus antibody immune response and DIO, contributing new theoretical insights for future understanding of DIO.

Keywords

Herpes Simplex Virus, Antibody Immune Response, Drug-Induced Obesity, Mendelian Randomization

PDF

References

  1. Verhaegen, A. A., & Van Gaal, L. F. Drug-induced obesity and its metabolic consequences: A review with a focus on mechanisms and possible therapeutic options. J. Endocrinol. Invest. 40, 1165–1174 (2017).
  2. Müller, T. D., Blüher, M., Tschöp, M. H., & DiMarchi, R. D. Anti-obesity drug discovery: Advances and challenges. Nat. Rev. Drug Discov. 21, 201–223 (2022).
  3. Krawczyk, A. et al. Overcoming drug-resistant herpes simplex virus (HSV) infection by a humanized antibody. Proc. Natl. Acad. Sci. U.S.A. 110, 6760–6765 (2013).
  4. Hasan, M. R. et al. Virome-wide serological profiling reveals association of herpesviruses with obesity. Sci. Rep. 11, 2562 (2021).
  5. Freuer, D. et al. Seropositivity of selected chronic infections and different measures of obesity. PLoS One 15, e0231974 (2020).
  6. Bassols, J., Moreno, J. M., Ortega, F., Ricart, W., & Fernandez-Real, J. M. Characterization of herpes virus entry mediator as a factor linked to obesity. Obesity (Silver Spring) 18, 239–246 (2010).
  7. Aktar, S., Arii, J., Tjan, L. H., Nishimura, M., & Mori, Y. Human herpesvirus 6A tegument protein U14 induces NF-κB signaling by interacting with p65. J. Virol. 95, e0126921 (2021).
  8. Burgess, S. et al. Guidelines for performing Mendelian randomization investigations: Update for summer 2023. Wellcome Open Res. 4, 186 (2023).
  9. Butler-Laporte, G., Kreuzer, D., Nakanishi, T., Harroud, A., Forgetta, V., & Richards, J. B. Genetic determinants of antibody-mediated immune responses to infectious diseases agents: A genome-wide and HLA association study. Open Forum Infect. Dis. 7, ofaa450 (2020).
  10. Palmer, T. M. et al. Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat. Methods Med. Res. 21, 223–242 (2012).
  11. Lin, S. H., Brown, D. W., & Machiela, M. J. LDtrait: An online tool for identifying published phenotype associations in linkage disequilibrium. Cancer Res. 80, 3443–3446 (2020).
  12. Zamora, M. R. DNA viruses (CMV, EBV, and the herpesviruses). Semin. Respir. Crit. Care Med. 32, 454–470 (2011).
  13. Bernaudat, F. et al. Structural basis of DNA methylation-dependent site selectivity of the Epstein-Barr virus lytic switch protein ZEBRA/Zta/BZLF1. Nucleic Acids Res. 50, 490–511 (2022).
  14. Zhang, L. A common mechanism links Epstein-Barr virus infections and autoimmune diseases. J. Med. Virol. 95, e28363 (2023).
  15. Song, L. et al. Identification of anti-Epstein-Barr virus (EBV) antibody signature in EBV-associated gastric carcinoma. Gastric Cancer 24, 858–867 (2021).
  16. Verbeek, R., Vandekerckhove, L., & Van Cleemput, J. Update on human herpesvirus 7 pathogenesis and clinical aspects as a roadmap for future research. J. Virol. 98, e0043724 (2024).
  17. Zhang, Y. et al. Neuregulin4 acts on hypothalamic ErBb4 to excite oxytocin neurons and preserve metabolic homeostasis. Adv. Sci. (Weinh) 10, e2204824 (2023).
  18. Cao, L. et al. Immune mechanisms in multiple sclerosis: CD3 levels on CD28+ CD4+ T cells link antibody responses to human herpesvirus 6. Cytokine 187, 156866 (2025).
  19. Darvish Molla, Z., Kalbasi, S., Kalantari, S., Bidari Zerehpoosh, F., Shayestehpour, M., & Yazdani, S. Evaluation of the association between human herpesvirus 6 (HHV-6) and Hashimoto's thyroiditis. Iran J. Microbiol. 14, 563–567 (2022).
  20. Kobayashi, N. et al. Human herpesvirus 6B greatly increases risk of depression by activating hypothalamic-pituitary-adrenal axis during latent phase of infection. iScience 23, 101187 (2020).
  21. Salgado, B. et al. Cholesterol modulation attenuates the AD-like phenotype induced by herpes simplex virus type 1 infection. Biomolecules 14, 603 (2024).
  22. Piacentini, R., & Grassi, C. Interleukin 1β receptor and synaptic dysfunction in recurrent brain infection with herpes simplex virus type-1. Neural Regen. Res. 20, 416–423 (2025).
  23. Asakura, M. et al. Elevated cerebrospinal fluid IgG index in herpes simplex encephalitis post-HSV-1 clearance: A preliminary study. J. Med. Virol. 96, e29850 (2024).
  24. Hayes, C. K., Wilcox, D. R., Yang, Y., Coleman, G. K., Brown, M. A., & Longnecker, R. ASC-dependent inflammasomes contribute to immunopathology and mortality in herpes simplex encephalitis. PLoS Pathog. 17(2), e1009285 (2021).
  25. Hait, A. S. et al. Defects in LC3B2 and ATG4A underlie HSV2 meningitis and reveal a critical role for autophagy in antiviral defense in humans. Sci. Immunol. 5, eabc2691 (2020).